am pute
Release 0.1.0.dev0

G. Lemaitre

Nov 28, 2021

CONTENTS

1 Getting Started 3
1.1 PrerequiSites e e e e 3

1.2 Inmstall . . oo o e e e e e e e 3
1.2.1 From PyPi or conda-forge repositorieso 3

1.2.2 Fromsource availableon GitHub 3

1.3 Testand COVETage v v v v v it e e e e e e e e e e e e e e e e e e e 4

1.4 Contribute e e e 4

2 User Guide 5
2.1 What are missing values? L. e e e e e e e e 5
2.2 Missingness mechanisms L oL e 6

3 API reference 9
3.1 Univariate amputation oL e e e e e e e e e e e e e e e e e 9
3.1.1 UnivariateAmputer e e e e e e 9

4 Examples 13
4.1 Univariate amputation oL e e e e e e e e e e 13
4.1.1 Missing completely at random (MCAR) 13

5 Release history 17
5.1 Version 0.1.0 (under development) o e e e e 17
5.1.1 Changelog o e e e e 17

6 About us 19
6.1 HIistory o e e e e e e 19
6.1.1 Developmentlead 19

6.2 ContribUtOrs o e e e e e e e e 19
Index 21

ampute, Release 0.1.0.dev0

Date: Nov 28, 2021 Version: 0.1.0.dev(
Useful links: Binary Installers | Source Repository | Issues & Ideas

Ampute is a open source (new BSD) Python package that provides some scikit-learn compatible utilities to generate
dataset with missing values from a given dataset.

To the installation guideline
To the user guide
To the reference guide

To the gallery of examples

CONTENTS 1

https://pypi.org/project/ampute
https://github.com/glemaitre/ampute
https://github.com/glemaitre/ampute/issues

ampute, Release 0.1.0.dev0

2 CONTENTS

CHAPTER
ONE

GETTING STARTED

1.1 Prerequisites

The ampute package requires the following dependencies:
* python (>=3.7)
e numpy (>=1.17.5)
* scipy (>=1.0.1)

e scikit-learn (>=1.0)

1.2 Install

1.2.1 From PyPi or conda-forge repositories

ampute is currently available on the PyPi’s repositories and you can install it via pip:

pip install -U ampute

The package is release also in conda-forge platform:

conda install -c conda-forge ampute

1.2.2 From source available on GitHub

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from Github and
install all dependencies:

git clone https://github.com/glemaitre/ampute.git
cd ampute
pip install .

Be aware that you can install in developer mode with:

pip install --no-build-isolation --editable .

If you wish to make pull-requests on GitHub, we advise you to install pre-commit:

ampute, Release 0.1.0.dev0

pip install pre-commit
pre-commit install

1.3 Test and coverage

You want to test the code before to install:

$ make test

You wish to test the coverage of your version:

$ make coverage

You can also use pytest:

$ pytest ampute -v

1.4 Contribute

You can contribute to this code through Pull Request on GitHub. Please, make sure that your code is coming with unit
tests to ensure full coverage and continuous integration in the APIL.

4 Chapter 1. Getting Started

https://github.com/glemaitre/ampute/pulls

CHAPTER
TWO

USER GUIDE

Learning a predictive model in presence of missing data is a difficult task. This topic is still under investigation in
research. In this regard, these investigations required to study different type of missingness mechanisms in a control
environment.

The ampute package provides a set of tools to amputate a given dataset. It allows to handcraft the missingness mech-
anism and pattern that later be studied.

2.1 What are missing values?

Let’s first define a couple of notation that we will use in this documentation Our dataset is denoted by X of shape (n, p)
where n is the number of samples and p is the number of features. Programmatically, we can represent such a matrix
as a NumPy array:

>>> from numpy.random import default_rng

>>> rng = default_rng(0)

>>> n_samples, n_features = 5, 3

>>> X = rng.normal (size=(n_samples, n_features))

>>> X

array([[0.12573022, -0.13210486, 0.64042265],
[0.10490012, -0.53566937, 0.36159505],
[1.30400005, 0.94708096, -0.70373524],
[-1.26542147, -0.62327446, 0.04132598],
[-2.32503077, -0.21879166, -1.24591095]1)

If we are lucky, for each sample (i.e. row of X'), we always have an observation. However, we could be unlucky -e.g.
one of the sensor collecting data was broken- and some observations could be missing.

In NumPy, the sentinel generally used to represent missing values is np .nan. For instance, if for the first sample in X,
the value of the second feature is not collected, we should have:

>>> import numpy as np

>>> X_missing = X.copy(Q)

>>> X_missing[0, 1] = np.nan

>>> X_missing

array([[0.12573022, nan, 0.64042265],
[0.10490012, -0.53566937, 0.36159505],
[1.30400005, 0.94708096, -0.70373524],
[-1.26542147, -0.62327446, 0.04132598],
[-2.32503077, -0.21879166, -1.24591095]1)

ampute, Release 0.1.0.dev0

In a machine learning setting where one is interested about training a predictive model, such missing values are prob-
lematic. Let’s define a linear relationship (with some noise) between the data matrix and the target vector that we want
to predict:

>>> coef = rng.normal(size=n_features)

>>>y = X @ coef + rng.normal(scale=0.1, size=n_samples)

>>> y

array([-0.18157161, 0.2046067 , -1.26059589, 1.38942449, 2.14918582])

If we would like to train a linear regression on this problem, we could use for instance scikit-learn:

>>> from sklearn.linear_model import LinearRegression
>>> reg = LinearRegression().fit(X, y)

>>> reg.coef_

array([-0.67735802, -0.70333477, -0.32484547])

However, with the presence of missing values, we cannot use this approach:

>>> try:

reg.fit(X_missing, y)

. except ValueError as e:

print(e)
Input X contains NaN.
LinearRegression does not accept missing values encoded as NaN natively.
For supervised learning, you might want to consider
sklearn.ensemble.HistGradientBoostingClassifier and Regressor which accept
missing values encoded as NaNs natively. Alternatively, it is possible to
preprocess the data, for instance by using an imputer transformer in a pipeline
or drop samples with missing values.
See https://scikit-learn.org/stable/modules/impute.html

scikit-learn is giving you a straightforward answer informing you that it does not accept missing values. Thus, one
needs to a strategy to deal with missing values.

In the following section, we describe what are the missingness mechanisms used in the literature to simulate the presence
of missing values in a dataset.

2.2 Missingness mechanisms

In the literature, there are three reported mechanism to control the missingness of a dataset: missing completely at
random (MCAR), missing at random (MAR), and missing not at random (MNAR). We will give a brief description of
each of them.

MCAR strategy is straightforward. For a given feature, missing values are created at random. Let’s imagine the first
feature in X contains missing values. MCAR strategy is be equivalent to:

>>> X_missing_mcar = X.copy()

>>> missing_values_indices = rng.choice(

. n_samples, size=n_samples // 2, replace=False
=)

>>> X_missing_mcar[missing_values_indices, 0] = np.nan

>>> X_missing_mcar

array([[0.12573022, -0.13210486, 0.64042265],

(continues on next page)

6 Chapter 2. User Guide

ampute, Release 0.1.0.dev0

(continued from previous page)

[0.10490012, -0.53566937, 0.36159505],
[nan, 0.94708096, -0.70373524],
[nan, -0.62327446, 0.04132598],
[-2.32503077, -0.21879166, -1.24591095]11)

Here, there is not link between the missing values and the features in X .

2.2. Missingness mechanisms 7

ampute, Release 0.1.0.dev0

8 Chapter 2. User Guide

CHAPTER
THREE

API REFERENCE

This is the full API documentation of the ampute toolbox.

3.1 Univariate amputation

UnivariateAmputer([strategy, subset, ...]) Ampute a datasets in an univariate manner.

3.1.1 UnivariateAmputer

class ampute.UnivariateAmputer (strategy="mcar’, subset=None, ratio_missingness=0.5, copy=True,
random_state=None)
Ampute a datasets in an univariate manner.

Univariate imputation refer to the introduction of missing values, one feature at a time.
Parameters

strategy [str, default="mcar”’] The missingness strategy to ampute the data. Possible choices
are:

e "mcar": missing completely at random. This strategy implies that the missing values are
amputated for a feature without any dependency with other features.

subset [list of {int, str}, int or float, default=None] The subset of the features to be amputated.
The possible choices are:

* None: all features are amputated.

e list of {int, str}: the indices or names of the features to be amputated.
» float: the ratio of features to be amputated.

e int: the number of features to be amputated.

ratio_missingness [float or array-like, default=0.5] The ratio representing the amount of missing
data to be generated. If a float, all features to be imputed will have the same ratio. If an
array-like, the ratio of missingness for each feature will be drawn from the array. It should
be consistent with subset when a list is provided for subset.

copy [bool, default=True] Whether to perform the amputation inplace or to trigger a copy. The
default will trigger a copy.

Attributes

ampute, Release 0.1.0.dev0

amputated_features_indices_ [ndarray of shape (n_selected_features,)] The indices of the fea-
tures that have been amputated.

Examples

>>> from numpy.random import default_rng

>>> rng = default_rng(0)

>>> n_samples, n_features = 5, 3

>>> X = rng.normal(size=(n_samples, n_features))

One can amputate values using the common transformer scikit-learn API:

>>> amputer = UnivariateAmputer (random_state=42)
>>> amputer. fit_transform(X)
array([[0.12573022, -0.13210486, 0.64042265],

[nan, -0.53566937, nan],
[nan, nan, nan],
[nan, nan, 0.04132598],
[-2.32503077, nan, -1.24591095]11)

The amputer can be used in a scikit-learn Pipeline.

>>> from sklearn.impute import SimpleImputer

>>> from sklearn.pipeline import make_pipeline

>>> pipeline = make_pipeline(

UnivariateAmputer (random_state=42),

. SimpleImputer(strategy="mean"),

.)

>>> pipeline.fit_transform(X)

array([[0.12573022, -0.13210486, 0.64042265],
[-1.09965028, -0.53566937, -0.18805411]7,
[-1.09965028, -0.33388712, -0.18805411]7,
[-1.09965028, -0.33388712, 0.04132598],
[-2.32503077, -0.33388712, -1.24591095]11)

You can use the class as a callable if you don’t need to use a sklearn.pipeline.Pipeline:

>>> from ampute import UnivariateAmputer
>>> UnivariateAmputer (random_state=42) (X)
array([[0.12573022, -0.13210486, 0.64042265],

[nan, -0.53566937, nan],
[nan, nan, nan],
[nan, nan, 0.04132598],
[-2.32503077, nan, -1.24591095]1)

10 Chapter 3. API reference

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline
https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

ampute, Release 0.1.0.dev0

Methods
fit(X[, yD Validation of the parameters of amputer.
fit_transform(X[, y]) Fit to data, then transform it.
get_params([deep]) Get parameters for this estimator.
set_params(**params) Set the parameters of this estimator.
transform(X[, yl) Amputate the dataset X with missing values.

fit (X, y=None)
Validation of the parameters of amputer.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)] The dataset to
be amputated.

y [Ignored] Present to follow the scikit-learn API.
Returns
self The validated amputer.

fit_transform(X, y=None, **fit_params)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters £it_params and returns a transformed version of X.
Parameters
X [array-like of shape (n_samples, n_features)] Input samples.

y [array-like of shape (n_samples,) or (n_samples, n_outputs), default=None] Target values
(None for unsupervised transformations).

**it_params [dict] Additional fit parameters.
Returns
X_new [ndarray array of shape (n_samples, n_features_new)] Transformed array.

get_params (deep=True)
Get parameters for this estimator.

Parameters

deep [bool, default=True] If True, will return the parameters for this estimator and contained
subobjects that are estimators.

Returns
params [dict] Parameter names mapped to their values.

set_params (**params)
Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have
parameters of the form <component>__<parameter> so that it’s possible to update each component of a
nested object.

Parameters
**params [dict] Estimator parameters.

Returns

3.1.

Univariate amputation 11

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

ampute, Release 0.1.0.dev0

self [estimator instance] Estimator instance.

transform(X, y=None)
Amputate the dataset X with missing values.

Parameters

X [{array-like, sparse matrix, dataframe} of shape (n_samples, n_features)] The dataset to
be amputated.

y [Ignored] Present to follow the scikit-learn API.
Returns

X_amputed [{ndarray, sparse matrix, dataframe} of shape (n_samples, n_features)] The
dataset with missing values.

Examples using ampute.UnivariateAmputer

* Univariate amputation

12 Chapter 3. API reference

CHAPTER
FOUR

EXAMPLES

General-purpose and introductory examples for the ampute package.

4.1 Univariate amputation

This example demonstrates different ways to amputate a dataset in an univariate manner.

Author: G. Lemaitre
License: BSD 3 clause

import sklearn
import seaborn as sns

sklearn.set_config(display="diagram")
sns.set_context("'poster")

Let’s create a synthetic dataset composed of 10 features. The idea will be to amputate some of the observations with
different strategies.

import pandas as pd
from sklearn.datasets import make_classification

X, v = make_classification(n_samples=10_000, n_features=10, random_state=42)

feature_names = [f"Features #{i}" for i in range(X.shape[1])]
X = pd.DataFrame(X, columns=feature_names)

4.1.1 Missing completely at random (MCAR)

We will show how to amputate the dataset using a MCAR strategy. Thus, we will amputate 3 given features randomly
selected.

import numpy as np

rng = np.random.default_rng(42)
n_features_with_missing_values = 3
features_with_missing_values = rng.choice(
feature_names, size=n_features_with_missing_values, replace=False

)

13

ampute, Release 0.1.0.dev0

Now that we selected the features to be amputated, we can create an transformer that can amputate the dataset.

from ampute import UnivariateAmputer

amputer = UnivariateAmputer(
strategy="mcar",
subset=features_with_missing_values,
ratio_missingness=[0.2, 0.3, 0.4],

)

If we want to amputate the full-dataset, we can directly use the instance of UnivariateAmputer as a callable.

X_missing = amputer(X)
X_missing.head()

We can quickly check if we get the expected amount of missing values for the amputated features.

import matplotlib.pyplot as plt

ax = X_missing[features_with_missing_values].isna() .mean().plot.barh()
ax.set_title("Proportion of missing values")
plt.tight_layout()

Proportion of missing value

Features #6

Features #0

Features #9

| I I
0.0 0.2 0.4

Thus we see that we have the expected amount of missing values for the selected features.

Now, we can show how to amputate a dataset as part of the scikit-learn Pipeline.

14 Chapter 4. Examples

https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html#sklearn.pipeline.Pipeline

ampute, Release 0.1.0.dev0

from sklearn.impute import SimpleImputer

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import ShuffleSplit

model = make_pipeline(
amputer,
StandardScaler(),
SimpleImputer(strategy="mean"),
LogisticRegression(),

)

model

Now that we have our pipeline, we can evaluate it as usual with any cross-validation tools provided by scikit-learn.

n_folds = 100
cv = ShuffleSplit(n_splits=n_folds, random_state=42)
results = pd.Series(
cross_val_score(model, X, y, cv=cv, n_jobs=2),
index=[f"Fold #{i}" for i in range(n_folds)],

ax = results.plot.hist()
ax.set_x1im([0, 1]1)

ax.set_xlabel ("Accuracy")
ax.set_title("Cross-validation scores')
plt.tight_layout()

4.1. Univariate amputation 15

ampute, Release 0.1.0.dev0

Cross-validation scores

N
o
|

Frequency
=
T

0 | | |
0.00 0.25 0.50 0.75 1.00

Accuracy

Total running time of the script: (0 minutes 4.324 seconds)

16 Chapter 4. Examples

CHAPTER
FIVE

RELEASE HISTORY

5.1 Version 0.1.0 (under development)

5.1.1 Changelog
New features
Enhancements

Bug fixes
Maintenance

Deprecation

17

ampute, Release 0.1.0.dev0

18 Chapter 5. Release history

CHAPTER
SIX

ABOUT US

6.1 History

6.1.1 Development lead

This project started during a rainy Sunday afternoon by G. Lemaitre that was somehow pretty bored.

6.2 Contributors

Refers to GitHub contributors page.

19

https://github.com/glemaitre/ampute/graphs/contributors

ampute, Release 0.1.0.dev0

20 Chapter 6. About us

F

£it O (ampute.UnivariateAmputer method), 11
fit_transform() (ampute.UnivariateAmputer method),
11

G

get_params () (ampute. UnivariateAmputer method), 11

S

set_params () (ampute.UnivariateAmputer method), 11

T

transform() (ampute. UnivariateAmputer method), 12

U

UnivariateAmputer (class in ampute), 9

INDEX

21

	Getting Started
	Prerequisites
	Install
	From PyPi or conda-forge repositories
	From source available on GitHub

	Test and coverage
	Contribute

	User Guide
	What are missing values?
	Missingness mechanisms

	API reference
	Univariate amputation
	UnivariateAmputer
	Examples using ampute.UnivariateAmputer

	Examples
	Univariate amputation
	Missing completely at random (MCAR)

	Release history
	Version 0.1.0 (under development)
	Changelog
	New features
	Enhancements
	Bug fixes
	Maintenance
	Deprecation

	About us
	History
	Development lead

	Contributors

	Index

